The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum.
نویسندگان
چکیده
We describe a conserved yeast gene, ERO1, that is induced by the unfolded protein response and encodes a novel glycoprotein required for oxidative protein folding in the ER. In a temperature-sensitive ero1-1 mutant, newly synthesized carboxypeptidase Y is retained in the ER and lacks disulfide bonds, as shown by thiol modification with AMS. ERO1 apparently determines cellular oxidizing capacity since mutation of ERO1 causes hypersensitivity to the reductant DTT, whereas overexpression of ERO1 confers resistance to DTT. Moreover, the oxidant diamide can restore growth and secretion in ero1 mutants. Genetic tests distinguish the essential function of ERO1 from that of PDI1. We show that glutathione is not required for CPY folding and conclude that Ero1p functions in a novel mechanism that sustains the ER oxidizing potential, supporting net formation of protein disulfide bonds.
منابع مشابه
Pbn1p: an essential endoplasmic reticulum membrane protein required for protein processing in the endoplasmic reticulum of budding yeast.
PBN1 was identified as a gene required for production of protease B (PrB) activity in Saccharomyces cerevisiae. PBN1 encodes an endoplasmic reticulum (ER)-localized, type I membrane glycoprotein and is essential for cell viability. To study the essential function(s) of Pbn1p, we constructed a strain with PBN1 under control of the GAL promoter. Depletion of Pbn1p in this strain abrogates process...
متن کاملGlutathione limits Ero1-dependent oxidation in the endoplasmic reticulum.
Many proteins of the secretory pathway contain disulfide bonds that are essential for structure and function. In the endoplasmic reticulum (ER), Ero1 alpha and Ero1 beta oxidize protein disulfide isomerase (PDI), which in turn transfers oxidative equivalents to newly synthesized cargo proteins. However, oxidation must be limited, as some reduced PDI is necessary for disulfide isomerization and ...
متن کاملVitamin K epoxide reductase contributes to protein disulfide formation and redox homeostasis within the endoplasmic reticulum
The transfer of oxidizing equivalents from the endoplasmic reticulum (ER) oxidoreductin (Ero1) oxidase to protein disulfide isomerase is an important pathway leading to disulfide formation in nascent proteins within the ER. However, Ero1-deficient mouse cells still support oxidative protein folding, which led to the discovery that peroxiredoxin IV (PRDX4) catalyzes a parallel oxidation pathway....
متن کاملFAD oxidizes the ERO 1 - PDI electron transfer chain : The role of membrane integrity q , qq
The molecular steps of the electron transfer in the endoplasmic reticulum from the secreted proteins during their oxidation are relatively unknown. We present here that flavine adenine dinucleotide (FAD) is a powerful oxidizer of the oxidoreductase system, Ero1 and PDI, besides the proteins of rat liver microsomes and HepG2 hepatoma cells. Inhibition of FAD transport hindered the action of FAD....
متن کاملEro1-α and PDIs constitute a hierarchical electron transfer network of endoplasmic reticulum oxidoreductases
Ero1-α and endoplasmic reticulum (ER) oxidoreductases of the protein disulfide isomerase (PDI) family promote the efficient introduction of disulfide bonds into nascent polypeptides in the ER. However, the hierarchy of electron transfer among these oxidoreductases is poorly understood. In this paper, Ero1-α-associated oxidoreductases were identified by proteomic analysis and further confirmed b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cell
دوره 1 2 شماره
صفحات -
تاریخ انتشار 1998